120 lines
3.0 KiB
PHP
120 lines
3.0 KiB
PHP
<?php
|
|
|
|
namespace PhpOffice\PhpSpreadsheet\Shared\Trend;
|
|
|
|
class ExponentialBestFit extends BestFit
|
|
{
|
|
/**
|
|
* Algorithm type to use for best-fit
|
|
* (Name of this Trend class).
|
|
*
|
|
* @var string
|
|
*/
|
|
protected $bestFitType = 'exponential';
|
|
|
|
/**
|
|
* Return the Y-Value for a specified value of X.
|
|
*
|
|
* @param float $xValue X-Value
|
|
*
|
|
* @return float Y-Value
|
|
*/
|
|
public function getValueOfYForX($xValue)
|
|
{
|
|
return $this->getIntersect() * $this->getSlope() ** ($xValue - $this->xOffset);
|
|
}
|
|
|
|
/**
|
|
* Return the X-Value for a specified value of Y.
|
|
*
|
|
* @param float $yValue Y-Value
|
|
*
|
|
* @return float X-Value
|
|
*/
|
|
public function getValueOfXForY($yValue)
|
|
{
|
|
return log(($yValue + $this->yOffset) / $this->getIntersect()) / log($this->getSlope());
|
|
}
|
|
|
|
/**
|
|
* Return the Equation of the best-fit line.
|
|
*
|
|
* @param int $dp Number of places of decimal precision to display
|
|
*
|
|
* @return string
|
|
*/
|
|
public function getEquation($dp = 0)
|
|
{
|
|
$slope = $this->getSlope($dp);
|
|
$intersect = $this->getIntersect($dp);
|
|
|
|
return 'Y = ' . $intersect . ' * ' . $slope . '^X';
|
|
}
|
|
|
|
/**
|
|
* Return the Slope of the line.
|
|
*
|
|
* @param int $dp Number of places of decimal precision to display
|
|
*
|
|
* @return float
|
|
*/
|
|
public function getSlope($dp = 0)
|
|
{
|
|
if ($dp != 0) {
|
|
return round(exp($this->slope), $dp);
|
|
}
|
|
|
|
return exp($this->slope);
|
|
}
|
|
|
|
/**
|
|
* Return the Value of X where it intersects Y = 0.
|
|
*
|
|
* @param int $dp Number of places of decimal precision to display
|
|
*
|
|
* @return float
|
|
*/
|
|
public function getIntersect($dp = 0)
|
|
{
|
|
if ($dp != 0) {
|
|
return round(exp($this->intersect), $dp);
|
|
}
|
|
|
|
return exp($this->intersect);
|
|
}
|
|
|
|
/**
|
|
* Execute the regression and calculate the goodness of fit for a set of X and Y data values.
|
|
*
|
|
* @param float[] $yValues The set of Y-values for this regression
|
|
* @param float[] $xValues The set of X-values for this regression
|
|
*/
|
|
private function exponentialRegression(array $yValues, array $xValues, bool $const): void
|
|
{
|
|
$adjustedYValues = array_map(
|
|
function ($value) {
|
|
return ($value < 0.0) ? 0 - log(abs($value)) : log($value);
|
|
},
|
|
$yValues
|
|
);
|
|
|
|
$this->leastSquareFit($adjustedYValues, $xValues, $const);
|
|
}
|
|
|
|
/**
|
|
* Define the regression and calculate the goodness of fit for a set of X and Y data values.
|
|
*
|
|
* @param float[] $yValues The set of Y-values for this regression
|
|
* @param float[] $xValues The set of X-values for this regression
|
|
* @param bool $const
|
|
*/
|
|
public function __construct($yValues, $xValues = [], $const = true)
|
|
{
|
|
parent::__construct($yValues, $xValues);
|
|
|
|
if (!$this->error) {
|
|
$this->exponentialRegression($yValues, $xValues, (bool) $const);
|
|
}
|
|
}
|
|
}
|